
B U S I N E S S A G I L I T Y B L O C K E R S
H O W T O U N D E R S TA N D A N D D E A L W I T H T H E M

@ S C R E S C E N C I O

S A M U E L C R E S C Ê N C I O

M I N D S E T C H A N G E

T H E P O W E R O F

J C U R V E O F C H A N G E

H Y P E C Y C L E

B U S I N E S S A G I L I T Y
M AT U R I T Y A S S E S S M E N T

U N D E R S TA N D I N G W H Y
B U S I N E S S A G I L I T Y B L O C K E R S

S T R AT E G Y

VA L U E S T R E A M F O C U S
S T R AT E G Y

Without value stream focus, people tend to focus on activities of
the current department, not on the value for the real customer.
Value stream focus connects the entire value chain, improves

communication and foster unrestricted and unconditional
collaboration.

S H A R E D V I S I O N A N D P U R P O S E
S T R AT E G Y

Purpose is what really bonds people together towards a common
goal: achieve the vision. Without a clear definition of what the

purpose really is, team might not reach cohesion and vision may
never be fulfilled.

S H A R E D P R I N C I P L E S A N D VA L U E S
S T R AT E G Y

When people agree on what are the principles and values that
guide their behaviour, they don't need a lot of rules for controlling

them. They will be able to develop an inner pressure where
everybody understands what is acceptable and what is not.

E M P O W E R E D
C R O S S - F U N C T I O N A L T E A M S
S T R AT E G Y

Build projects around motivated individuals. Give them the
environment and support they need, and trust them to

get the job done.

E C O - S Y S T E M A G I L I T Y
S T R AT E G Y

Real business agility requires going beyond organisational frontiers.
When people all over the value stream, including not only internal
departments but mainly, partners, customers, users and providers

do collaborate to constantly improve the system,
then real business agility happens.

C L A R I T Y O F
B U S I N E S S O B J E C T I V E S
S T R AT E G Y

In an agile environment, responsibility for delivering results is
shared by all community members. They know exactly what success

looks like and how they will measure it.

M A N A G E M E N T

V I S U A L M A N A G E M E N T
M A N A G E M E N T

Visual management lets you know exactly what is going on and
where the bottlenecks of the system are. It allows you to visualize

the flow, understand its throughput, and make better delivery
predictions. It also boosts collaboration, improves communication,

replaces fake status reports, engages respect for people, and
foments servant leadership.

VA L U E D R I V E N B A C K L O G S
M A N A G E M E N T

When teams have a clear understanding of value and how it's
measured they can be pragmatic on choosing what's going to be
produced and when. Therefore, maximizing the flow of value and

reducing waste by eliminating development
of non value added features.

P U L L S Y S T E M
M A N A G E M E N T

When using pull system, teams don't generate waste by
overloading the system and can manage system loading to reduce

work in progress and achieve maximum performance.

E C O N O M I C F L O W M A N A G E M E N T
M A N A G E M E N T

When properly understanding cost of delay, cost of transaction,
holding cost, coordination cost , and cost of production, teams will
be able to make better decisions. It will help them to diminish time
to market, reduce cycle time, maximize value delivery and improve

efficiency in the entire eco-system.

C O N T I N U O U S D E L I V E R Y
M A N A G E M E N T

Deliver sooner and improve continuously. That's one of the main
principles of agile that helps teams to learn more and faster with
shorter feedback loops, and therefore, delight their customers.

C A PA C I T Y M A N A G E M E N T
M A N A G E M E N T

Understanding current capacity is a pre-requisite to start delivering
on time. Agile teams learn their velocity by analysing the

throughput of the flow. Therefore, they can enable pull system and
be more accurate about what they are capable of.

E N G I N E E R I N G

T E S T A U T O M AT I O N
E N G I N E E R I N G

Safety is one of the main pre-requisites of modern agile. The only
way to achieve quality and correctness of complex engineering

systems is through teste automation. Moreover, agile teams start
from scratch with a test first approach in mind, helping them to

build integrity in as they evolve.

S TA N D A R D I Z E D C L E A N C O D E
E N G I N E E R I N G

Complex code is harder and more expansive to maintain. It makes
it more difficult to read, to test, and to adapt. Agile teams will have

clean and simple code as a standard and will guarantee that
through automated build processes.

FA U LT T O L E R A N C E
A N D S E L F - H E A L I N G
E N G I N E E R I N G

Modern agile architectures will be able to automatically deal with
problems. It means that they may have a failure but don't crash.
Instead, they are capable of healing themselves by instantiating

new resources, upgrading and downgrading computational
capacity automatically.

E M E R G I N G M I C R O S E R V I C E S
A R C H I T E C T U R E
E N G I N E E R I N G

Agile systems must have flexibility to deploy only parts that were
changed. Breaking down big monolithic applications into smaller

peaces with single responsibility enhances business agility,
improves communication and facilitate learning.

D E V S E C O P S
E N G I N E E R I N G

Agile teams are responsible to use DEVSECOPS practices to
design, develop and maintain infra-structure for development,

staging and production environments. All fully automated to help
the team to gain agility while also taking care of security.

A U T O M AT E D D E P L O Y M E N T
E N G I N E E R I N G

Manual processes are error prone, time consuming and inefficient.
Agile teams will use automate scripts that can automatically trigger

deployment upon a successful build. Alongside with teste
automation and devsecops, it allows them to have always shippable

code and achieve continuous delivery.

H O W T O D E A L W I T H T H E M
B U S I N E S S A G I L I T Y B L O C K E R S

STRATEGY LAYER

Define PURPOSE!

Why purpose drives change?

Define Purpose

Start with why!

Why

How

What

Simon Sineck
5 Steps of driving CHANGE!

Purpose

Environment
Behavior and Attitude

Skills and abilities
Values and Beliefs

Empower PEOPLE

S I T U AT I O N A L L E A D E R S H I P
M O D E L

C O A C H I N G

K E N
B L A N C H A R D

Empower People

• inspiring leadership
• cross-functional
• self-organized
• small
• complete
• interorganizational
• colocated or remote
• Psychological safety

Characteristics of high
performance teams

EFFECTIVE TEAMS
C H A R A C T E R I S T I C S O F

STRUCTURES
F U N C T I O N A L

"If the parts of an organisation do not closely
reflect the essential parts of the product… then

the project will be in trouble.”

James O. Coplien and Neil B. Harrison

SPOTIFY

Share PRINCIPLES and
VALUES!

Share Principles and Values

SHARE THESE PRINCIPLES
• the root LEAN

PRINCIPLES
• the Principles and Values

of the Agile Manifesto
http://agilemanifesto.org

• Modern Agile
http://modernagile.org

http://agilemanifesto.org
http://modernagile.org

ESTABLISH
ORGANISATIONAL VISION!

Establish Organisational Vision

The VISION

defines WHERE

you want to be and

WHEN

Example

SpaceX designs,
manufactures and launches

advanced rockets and
spacecraft. The company
was founded in 2002 to

revolutionize space
technology, with the

ultimate goal of enabling
people to live on other

planets.

http://spacex.com/about

http://spacex.com/about

PLAN BUSINESS STRATEGY
WITH HOSHIN KANRI

Define Your Strategy

Hoshin Kanri

 “In God we trust, all others (must) bring data”.

MANAGEMENT LAYER

Break down BUSINESS GOALS

Break down BUSINESS GOALS

A user story is a reminder about a conversation that has to take place between
the team and the customer, in order to achieve mutual understanding of how

to design, build, test and deliver a piece of technical solution.

As a <persona>, I want to <action>, so that I have <value>

Stories should be INVEST
I - Independent
N - Negotiable
V - Valuable
E - Estimable
S - Small
T - Testable

Stories are composed by:
Title/Description
Priority
Acceptance criteria

BDD Style (given, when, then)
Estimates (optional)
Constrains (optional)

User Stories - Canonical Model

MAP THE VALUE STREAM

M A P T H E VA L U E S T R E A M
F R O M C O N C E P T T O C A S H

SHAPE AND PRIORITIZE
DEMAND THROUGH

ECONOMICS

UNDERSTANDING FLOW COST

• Cost of coordination
• Cost of transaction
• Cost of holding
• Cost of delay

COST OF DELAY
Cost of delay is the lost of

opportunity when you delay delivery.

B U S I N E S S VA L U E
M A X I M I Z E T H E

B
us

in
es

s
Va

lu
e

$0

$25

$50

$75

$100

Time

Max Total Cost

Cost of Delay

Cost of Excess Capacity

PULL TO PRODUCTION
ACORDING TO CAPACITY

UNDERSTAND CAPACITY
• Analyse throughput to know your velocity

• Forecast based on throughput
• Manage queues to help eliminating Muri and increasing profit

• Adjust batch size to minimize production costs and maximize profit

• Enable smaller batches and exploit variability
• Sequence work correctly:

✴FIFO - First in First Out - For low variability linear production flows

✴WSJF - Weighted Shortest Job First - For non homogenous flow in

product development

Small batches improve
QUEUE TIME

Managing queues is the key to improve product development economics.

Longer queues
Longer cycle time
Lower quality
More variability
Increased risk
More overhead
Less motivation

O P T I M I Z E T H E F L O W
M A N A G E S Y T E M L O A D T O

Q
U

EU
E

SI
ZE

0

25

50

75

100

CAPACITY UTILIZATION
100%

LIMIT
WORK IN PROGRESS

WIP LIMIT CAN BE
• Local - Just one phase of the

production line
• Regional - One or more

phases of the production line
• Global - The entire

production line

CUMULATIVE FLOW

Little’s law
Throughput = WIP / Cycle time
Cycle time = WIP / Throughput

APPLY SYSTEMS THINKING
TO IMPROVE THE WHOLE

VISUALIZE THROUGHPUT
TO MANAGE THE FLOW

ENGINEERING LAYER

DESIGN REACTIVE
MICROSERVICES

M I C R O S E R V I C E S A R C H I T E C T U R E
U N D E R S TA N D I N G T H E C O M P L E X I T Y O F

"Organizations which design systems ... are
constrained to produce designs which are copies of

the communication structures of these organizations."

— Conway’s Law

M I C R O S E R V I C E S A R C H I T E C T U R E
U N D E R S TA N D I N G T H E C O M P L E X I T Y O F

vs

Monolithic Microservices

M I C R O S E R V I C E S A R C H I T E C T U R E
U N D E R S TA N D I N G T H E C O M P L E X I T Y O F

Monolithic

pros cons

Single deploy Longer deployment cycles

Single language Single language

Less complexity Difficult to scale

Easier traceability Less business agility

Easier transaction handling Big ball of mud

M I C R O S E R V I C E S A R C H I T E C T U R E
U N D E R S TA N D I N G T H E C O M P L E X I T Y O F

Microservices

pros cons
Improves team communication Increased application complexity

Increases business agility Health monitoring and debugging

Different languages Different languages

Independent deployments Many moving parts

horizontal scaling Orchestration challenges

M I C R O S E R V I C E S A R C H I T E C T U R E
C H A R A C T E R I S T I C S O F

Zero configuration One click setup => test => deploy

Auto-discovery Service orchestration discovers and
communicates with existing services

High redundancy Up and down auto-scaling

Self-healing Recreation of failed services without manual
intervention

Fault-tolerant Requests should not be rejected until self-
healing mechanisms kickoff

CODE TO VALUE
JUST IN TIME

WITH TDD

CODE TO
VALUE

Rule #1
No code should be written unless
there is a well defined and very clear
understanding of the value that is
expected to be generated by the
code.

Rule #2
No code should be allowed in the
repository, unless the actual value
being generated by the code in
production matches the expected
value.

BUILD INTEGRITY IN

The
Evolutionary

Nature of
Software

Test first from acceptance definition to TDD
The magic red green refactor cycle

• Naming
• Sizing
• Coding standards
• Abstraction
• Functional programming
• Code documentation
• Shared ownership
• Always shippable
• Dry
• KISS
• Code smells

• Single Responsibility
• Open for extension, closed for modification
• Liskov substitution principle
• Interface Segregation
• Dependency Injection

CLEAN CODE
U N D E R S TA N D I N G

SOLID

AUTOMATE TEST
EARLY WITH JIDOKA

Tool assisted
• Performance and Load testing
• Security
• Fault tolerance

Manual or Automated
• Functional
• Unit
• Component
• Integration
• Acceptance
• Behaviour
• Mutation
• Manual

Exploratory Testing
• Usability

SOFTWARE TESTING APPROACHES
D I F F E R E N T T Y P E S O F T H E

SOFTWARE TESTING
S I M P L E A R C H I T E C T U R E F O R

AUTOMATE
THE POWER OF JIDOKA

Automate The Power of Jidoka

The Power
of Jidoka

Benefits of automation
Safety
high quality
productivity
knowledge management
The payoff of automation

Automate The Power of Jidoka

Opportunities
for

Automation

Test automation
Automated dependency management
Automated database management
Automated monitoring
Continuous Integration
Continuous delivery
Virtualizing environments
Seamless deployment
Scaling in the cloud

JUST IN TIME
ARCHITECTURING

Just In Time Architecturing

Sustainable
Unfair

Advantage

A great software architecture
provides a technically sophisticated,
hard to duplicate, sustainable unfair
competitive advantage.

Just In Time Architecturing

Emerging
Just in time

Architecturing

Enable micro services
Use Componentization
Foment Federated architectures

Just In Time Architecturing

Cost
Optimization

Reliability
Predictability
Performant
Testability
Scalability

CONTINUOUS
MONITORING

Continuous Monitoring

DATA
DRIVEN

Learn from analytics
Metrics that matter
Heart beat monitoring
Health monitoring

T O P S E C R E T
TA K E T H E L E A D A N D S H O W H O W I T ’ S D O N E

T H A N K Y O U !
@ S C R E S C E N C I O

S C R E S C E N C I O @ L E A N I T 1 0 1 . C O M

